Last Updated on

3D Printing Materials

There are a lot of different materials available for 3D printing, and it can be difficult to know which will best suit your needs. In this article, we’ll discuss the four main categories of 3D printing materials, their properties, how they’re produced, and their best uses. 

Extruded Thermoplastics

Extruded thermoplastics are what typically come to mind when someone thinks of 3D printing. Their rigidity and durability have contributed to their wide use in a variety of industries, making them the most common 3D printing materials available. Depending on the specific thermoplastic, there are additional mechanical properties that make them desirable for every day use, including heat resistance, fatigue resistance, high tensile strength, high flexural strength, low weight, electrical-dissipation, and more. Some can even simulate the appearance and feel of rubber. Common 3D printing thermoplastics include ABS-M30, ABS-ESD7, PC-ABS, Polycarbonate, PPSF, ULTEM 9085, Nylon 12, and TPU. 

In order to print this type of material, thermoplastic filament is fed from a spool through the print nozzle of a Fused Deposition Modeling (FDM) 3D printer. Here, it is melted and extruded onto a build platform. The print head uses the liquefied material to draw the first layer of the part to be printed. As layers are added, the material bonds together with lower layers to produce a strong, 3D printed part. Support material is also used to help build the part, especially in areas with overhangs or freestanding features, and is removed in post-processing. Support materials may be soluble or break-away depending on the heat deflection temperature of the thermoplastic being used. 

Best Applications

  • Functional Parts – The strength and durability of most thermoplastics make them the ideal material for functional prototypes, especially where designs must be evaluated before injection molding. Low-volume productions of end-use parts may also be made with these materials. 
  • High Temp – Most thermoplastics can withstand elevated temperatures without deformation or loss of strength. Some can be used to create molds for low-volume thermoforming. 


Photopolymers are liquid resin thermosets that cure when exposed to UV light. Because they are thermosets, this means they will not melt as ther